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Combined Effect of Reduced Band Number and
Increased Bandwidth on Shallow Water Remote

Sensing: The Case of WorldView 2
Zhongping Lee, Alan Weidemann, and Robert Arnone

Abstract—WorldView 2 (WV2), launched in September 2009,
is a satellite with hyperspatial resolution (∼0.5–2 m) capability
for Earth surface observation. It has eight spectral bands with
enhanced signal-to-noise ratio to cover the visible-to-near-infrared
(V–NIR) domain, thus providing a great potential for remote sens-
ing of coastal ecosystem, in particular, the aquatic environments
with shallow bottoms (e.g., coral reefs and seagrass beds). Tradi-
tionally, it requires ∼15 spectral bands in the V–NIR domain for
reliable analytical retrieval of bottom properties (e.g., bathymetry)
from remotely observed radiance spectrum. Data from WV2,
however, have eight bands, and the width of each band is quite
wide (∼50 nm or more). Thus, the spectral configuration of WV2
is far from optimal for spectral remote sensing of various complex
shallow environments, and it is important and necessary to know
how such a band setting affects the reliability of remote-sensing
retrievals. Here, we applied a hyperspectral optimization scheme
[hyperspectral optimization processing exemplar (HOPE)] to a
simulated shallow-bottom data set (sandy bottom) and compared
retrievals from both hyperspectral and WV2 spectral settings.
Retrieved results suggest that, for bottom contribution making
up 40% or more of the measured signal, the depths derived from
both hyperspectral and WV2 settings are generally consistent for
waters shallower than 5 m. However, depths derived with WV2
setting have greater uncertainty and, in general, are shallower
than those derived from the hyperspectral setting, particularly for
waters deeper than 10 m. Options to produce higher confident
properties from such band settings are discussed.

Index Terms—Bathymetry, coastal water, remote sensing.

I. INTRODUCTION

THE high-spatial-resolution WorldView 2 (referred to as
WV2 in the following text for brevity) satellite was

launched in September 2009 (www.digitalglobe.com). Its
Earth-observing sensor has eight spectral bands covering the
visible-to-near-infrared (V–NIR) range. More interesting is the
spatial resolution of the acquired image, which is ∼0.5–2 m
making it possible to provide sharp observations of nearshore
coastal environments where high spatial resolution is required
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to distinguish changes of geophysical properties. Equipped
with 11 bits of dynamic range, WV2 provides unprecedented
radiometric measurements that can be used to provide highly
desired geophysical properties of the land–ocean environments,
and one of those products is the bathymetry of shallow coastal
regions (www.digitalglobe.com). It has long been recognized
that bathymetry of shallow bottom could be retrieved from
measurement of water color [1]–[4], and successful retrievals of
shallow water bathymetry from airborne [5]–[10] and satellite
measurements [11], [12] have been presented in recent decades.

The retrieval of bottom properties requires high-quality ra-
diometric measurements that can be adequately atmospheri-
cally corrected, as well as a sophisticated algorithm that can
distinguish the various component contributions to the signal.
The earlier methodologies to estimate bathymetry from water
color generally take an empirical approach [1]–[4], where the
empirical coefficients are image specific and thus are difficult
to transfer from one image to another or between study areas.
In addition, because the derivation of the coefficients requires
a priori information, the application of this approach is difficult
for inaccessible or difficult-to-reach areas. Other algorithm
techniques [6], [13] use spectral optimization or lookup tables,
which are based on radiative transfer and modeling of the bio-
optical properties of the water column. These approaches relax
the dependence of image-specific modification and are there-
fore more applicable to different regions. This study focuses
on the spectral-optimization approach (SOA) for shallow water
remote sensing.

In an earlier study, Lee and Carder [14] showed that the num-
ber of spectral bands positioned in the visible–infrared domain
does impact the quality of retrieval of bottom properties. This is
because, for the retrieval of bathymetry, it is important to max-
imize the measurable signal reflected back from the bottom.
This return signal, however, depends on the spectral window
of the water medium that is most transparent, which changes
with water constituents. For a single sensor to cover most of
the transparency windows of natural aquatic environments, Lee
and Carder [14] suggested that a sensor should have at least
∼15 bands in the 400–800-nm spectral domain. WV2, however,
has only seven bands in the ∼400–900-nm domain, and each
band has a bandwidth of ∼50 nm. Fig. 1 shows an example
of a hyperspectral remote-sensing reflectance spectrum (Rrs, in
per steradian; ratio of water-leaving radiance to downwelling
irradiance above the surface) with the corresponding spectral
areas covered by the WV2 band settings. Many spectral features

0196-2892/$31.00 © 2012 IEEE
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Fig. 1. Example of remote-sensing reflectance spectra represented by hyper-
spectral and WV2 band settings.

present in the hyperspectral data no longer exist in WV2 obser-
vations. Note that these spectral features play an important role
in analytically retrieving subsurface geophysical information
from remotely collected data [14], [15], and [31]. The measure-
ment with limited wideband (LWB) setting, such as WV2, not
only diminishes the spectral signature reflected from the bottom
but also complicates the optical signals reflected back from the
bottom and scattered by the water column. It is thus important
to systematically evaluate and characterize the impacts of such
LWB settings on the analytical retrieval of products such as
shallow water bathymetry, since high-quality data products
from WV2 are strongly desired for many applications.

II. DATA

It is not easy to visualize the combined impact of LWB
settings on analytical retrievals. In order to characterize the
impacts of LWB on remote-sensing retrievals, in particular,
bathymetry, we use numerically simulated data of reflectance.
In part, this is due to the shortage of concurrent measurements
from both hyperspectral and WV2 sensors and comprehensive
subsurface measurements.

To efficiently simulate wide range of spectral Rrs of opti-
cally shallow waters, we used an analytical model [13], [16]
that describes Rrs as a function of properties of the bottom
(depth and reflectance) and the water column (absorption and
backscattering coefficients), instead of the widely used numeri-
cal model: Hydrolight [17]. However, this analytical expression
was actually derived from Hydrolight simulations [13], [16],
and Rrs modeled using the analytical expression agrees with
that from the more precise numerical simulation within ±10%.

Following Lee et al. [13], above-surface remote-sensing
reflectance can be expressed as

Rrs =G rrs
rrs = rCrs + rBrs

= rdprs

(
1− e−Dc(a+bb)H

)
+

ρ

π
e−DB(a+bb)H . (1)

rrs (in per steradian) is the subsurface remote-sensing re-
flectance, and parameter G accounts for the cross-surface
impact that includes sea-to-air transmission as well as
subsurface internal reflection [16], [18], [19]. Terms rCrs and rBrs
represent the contribution from water column and the bottom,

respectively. In addition, rdprs is the subsurface remote-sensing
reflectance when the bottom is optically deep (i.e., bottom
effects to rrs are negligible) and is expressed as [20]

rdprs = gw
bbw

a+ bb
+ gp

bbp
a+ bb

. (2)

gw is taken as 0.113 sr−1, while gp is modeled as

gp = 0.197

(
1− 0.636 e

−2.552
bbp
a+bb

)
. (3)

DC,B are model parameters that account for the elongation of
photon path lengths in the water due to scattering. The a and
bb are the absorption and backscattering coefficients (in per
meter), respectively, with ρ as the bottom reflectance and H as
the bottom depth (in meters). Except for H , all other variables
are functions of wavelength (λ, in nanometers; omitted here for
brevity). Note that values of ρ, H , a, and bb are required for the
generation of Rrs. The spectral absorption and backscattering
coefficients are described by [19]

a(λ) = aw(λ) + aph(λ) + adg(λ)

bb(λ) = bbw(λ) + bbp(λ) (4)

where aw(λ) and bbw(λ) are the absorption and backscattering
coefficients of pure water, respectively, and their values are
known [21], [22], and aph(λ), adg(λ), and bbp(λ) are the
absorption and backscattering coefficients of phytoplankton,
detritus–gelbstoff, and particulates, respectively, with values
taken from the International Ocean Colour Coordinating Group
(IOCCG) database [23]. It is important to recognize that
the spectral shapes of the three inherent optical properties
[aph(λ), adg(λ), and bbp(λ)] of this database are not constant,
and the shapes of aph(λ) were taken from field measure-
ments. The IOCCG database is extensive and has 500 data
sets covering clearer to turbid waters and therefore can be
assumed to be representative of many coastal and open-ocean
conditions. We took the first 300 only (a(440) in a range of
∼0.015−0.4 m−1) for the studies here, as it is less likely to
detect the bottom in turbid waters. In addition, because the
spectral resolution of the IOCCG data is 10 nm, we interpolated
the spectra of aph(λ), adg(λ), and bbp(λ) to every 5 nm
in order to generate “hyperspectral” Rrs. Furthermore, the
spectral range of the IOCCG data set is 400–800 nm, which
is further extended to 900 nm to cover the longer band of
WV2. Specifically, (4) was used for this expansion. For the
800–900-nm spectral window, aw(λ) values were taken from
Hale and Querry [24]; aph(λ) was taken as the value of
aph(800); adg(λ) was extended from adg(800) with an expo-
nential function of wavelength where the spectral slope was
provided in the IOCCG data set; and bbp(λ) was extended from
bbp(800) with a power function of wavelength where the power
coefficient was also provided in the IOCCG data set.

Eleven values of H were selected: 0.3, 0.5, 0.9, 1.5, 2.6,
4.5, 8, 12, 15, 19, and 25, representing roughly an increase
rate of 60% and a maximum retrievable depth of 25 m for
the modeling effort. Further, although different substrates have
different bottom reflectivities, a single and spectrally constant
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bottom reflectance was designated here. The reason for this is
threefold: 1) Our focus here is to compare and contrast remote-
sensing retrievals between hyperspectral and LWB settings;
2) even though only one bottom reflectance was employed,
bottom depth and water-column optical properties were not
constant and the latter varies spectrally; the combined effect
of bottom contribution to the above-surface remote-sensing
reflectance (that a remote sensor measures) is equivalent to that
of using various bottom reflectances; and 3) in remote-sensing
inversion, a different spectral shape for bottom reflectance
was used (see Section III), which avoided circular calculation
and is consistent with real-world situation (i.e., the spectral
information of the bottom has to be estimated or assumed). A
bottom albedo of 0.2 and assumed spectrally flat was used for
all the combination of water and depth values. Thus, 3300 sets
of Rrs(λ) were generated through the combinations of the 11
H values and the 300 a and bb spectra. Maximum contribution
from the bottom is calculated as

MB = max

(
rBrs(λ)

rrs(λ)

)
. (5)

Of this data set, there are ∼85% that have MB greater than
0.2 (20% of the total spectral signal) and ∼72% that have MB

greater than 0.5.
After the generation of the 3300 sets of hyperspectral Rrs,

equivalent Rrs’s at WV2 bands were calculated with the fol-
lowing approximation:

RLWB
rs (Bi) ≈

∫ 900

400 Rrs(λ)F
LWB
Bi (λ)dλ∫ 900

400 FLWB
Bi (λ)dλ

(6)

with FLWB
Bi (λ) as the band response function of Band #i. For

the study here, a boxcar function was assumed for each band
with the bandwidth of each band the same as those of WV2.

III. INVERSION OF BOTTOM AND WATER PROPERTIES

VIA SPECTRAL OPTIMIZATION

A. HOPE for Hyperspectral Data

We applied the hyperspectral optimization processing exem-
plar (HOPE) technique and protocols [5], [7], [11], [13] to
retrieve bottom and water properties of the 3300 hyperspectral
and WV2 data sets and then compared the retrievals with known
properties to characterize the impacts of LWB. HOPE basically
uses the spectral matching concept to derive subsurface proper-
ties of interest, and the following briefly summarizes the models
used in HOPE and the optimization procedure.

In general, we used the same analytical structure to link
remote-sensing reflectance with subsurface properties. Because
the 3300 data sets are numerically simulated, we used dif-
ferent rdprs and bio-optical models for the inherent optical
property (IOP) components in the inversion process to avoid
circular calculation. Specifically, rdprs takes the form as that in
Gordon et al. [18]

rdprs =

(
g0 + g1

bb
a+ bb

)
bb

a+ bb
(7)

Fig. 2. Spectral shape of bottom reflectance. Dotted spectrum is used in the
optimization inversion; solid curve is used in the data simulation.

with values of g0 and g1 taken as 0.089 and 0.125 sr−1 [25],
respectively.

Further, the three IOP spectra are modeled as

aph(λ) = [a0(λ) + a1(λ) ln(P )]P

adg(λ) =G exp (−S(λ− 440))

bbp(λ) =X

(
440

λ

)Y

(8)

where values for a0(λ) and a1(λ) are known [16] and Y
is estimated for each Rrs spectrum [25] with S taken as
0.015 nm−1 for default. P and G represent the absorption
coefficient of phytoplankton and detritus–gelbstoff, and X rep-
resents the backscattering coefficient of particles, all at 440 nm.
These IOP spectra are completely independent of the spectra
used for the generation of the simulated data sets.

The spectrum of bottom reflectance was modeled as

ρ(λ) = Bρ+bot. (9)

Here, ρ+bot is the 550-nm normalized bottom spectral re-
flectance, and to be different from the input bottom reflectance,
a sandy bottom spectrum [5] (see Fig. 2), which generally
increases with wavelength, was used. B value here thus rep-
resents retrieved bottom reflectance at 550 nm.

After these modeling considerations, each spectral Rrs can
then be expressed as

Rrs(λ1) =F (aw(λ1), bbw(λ1),P ,G,X,B,H)

Rrs(λ2) =F (aw(λ2), bbw(λ2),P ,G,X,B,H)

...

Rrs(λn) =F (aw(λn), bbw(λn),P ,G,X,B,H) . (10)

Therefore, there are just five unknowns to model a spectral Rrs,
and HOPE numerically solves for the five unknowns in (10) via
spectral optimization, i.e., to minimize an objective function
(11) that quantitatively compares modeled (10) and measured
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(the numerically simulated here) spectral Rrs. The objective
function was updated as

errRrs

=

√
Λλ2

λ1

(
Rrs(λ)−R̃rs(λ)

)2

+ w Λλ4

λ3

(
Rrs(λ)−R̃rs(λ)

)2

Λλ2

λ1
(Rrs(λ))+w Λλ4

λ3
(Rrs(λ))

(11)

with R̃rs for values from (10) and Rrs for values from mea-
surements. In (11), Λλ2

λ1
represents an average of the array

[Rrs(λ)] defined by the range of wavelengths, with λ1−λ2

and λ3−λ4 for the blue–yellow range (400–650 nm) and
yellow–red/infrared (650–900 nm) range, respectively. The
errRrs thus provides a quantitative measure of the relative
difference between modeled and measured spectral Rrs’s. This
objective function differs slightly from the earlier practices by
introducing a weighting factor (w), which is defined as

w =
Λλ2

λ1
(Rrs(λ))

Λλ4

λ3
(Rrs(λ))

. (12)

This was included because, for most shallow waters, the trans-
parency window is in the blue–green domain, and therefore,
Rrs in this spectral window could be significantly larger than
the Rrs in the yellow–red window. Consequently, errRrs could
be dominated by the Rrs difference in the blue–green window
in the traditionally defined errRrs function [13]. In other words,
without this weighting factor, errRrs is dominated by the varia-
tions in the λ1−λ2 window, which then could limit the search of
results that provide optimal matches in the λ3−λ4 range. With
the introduction of w, a balanced evaluation across the shorter
and longer wavelengths is better achieved. For data with high
noise in the longer wavelengths, however, it is either required
to smooth the image in those bands or skip the use of this
weighting factor; otherwise, the noise would be magnified.

In the HOPE process, values of P , G, X , B, and H are
initiated pixelwise (e.g., Lee et al. [5]) and here are taken as

P =0.05

(
Rrs(440)

Rrs(550)

)−1.7

G =1.5 P

X =0.1 P

B =0.1

H =0.3. (13)

To generate physically meaningful solutions, boundaries of the
five variables are required. For this investigation, a range found
in typical coastal waters is used

0.002 ≤P ≤ 0.7 m−1

0.001 ≤G ≤ 3.5 m−1

0.0002 ≤X ≤ 0.1 m−1

0.01 ≤B ≤ 0.9

0.02 ≤H ≤ 35 m.

To derive the five variables for each Rrs, we used the Solver
tool included in MS Excel. This tool uses several algorithms
to find optimal solutions that include the generalized reduced
gradient nonlinear solving method developed by Lasdon et al.
[26] and the simplex LP solving method implemented by
Fylstra et al. [27].

B. Optimization Scheme for LWB Setting

For the WV2 sensor or any other LWB sensor, Rrs is mea-
sured at a specific band, not at a specific wavelength. Therefore,
the objective function is written as (14) and (15), shown at the
bottom of the page. Bi represents the ith band of the sensor, and
only the first seven bands were used. The eighth band, which is
centered at 949 nm, has nearly no information of the water or
the bottom. In the optimization process, R̃rs(Bi) is the modeled
Rrs at Band i and is calculated with the following steps:
1) Hyperspectral (400–900 nm; 5-nm resolution) Rrs is gener-
ated using the five variables (10), and 2) the hyperspectral Rrs

is convolved to WV2 Rrs using (6).

IV. RESULTS AND DISCUSSION

Before we compare the retrieved bathymetry and absorption
values, Fig. 3 shows the errRrs values of the 3300 points, for
both the hyperspectral and LWB optimizations. These values
are generally under 0.035 (or 3.5%), and as expected, errRrs

values of WV2 are smaller than that of the hyperspectral
solution. The errRrs values in the figure basically provide a
confidence check about the SOA scheme and indicate that the
output values of this study were indeed those when errRrs

was minimized under the designed optimization system. It is
necessary to point out that, because SOA, in general, is an
implicit numerical solution process, a smaller errRrs value does
not necessarily indicate higher quality retrievals (sometimes,
negative parameters achieves even smaller errRrs, for instance).

errWV2
Rrs =

√√√√√ΛB4

B1

(
Rrs(Bi)− R̃rs(Bi)

)2

+ w ΛB7

B5

(
Rrs(Bi)− R̃rs(Bi)

)2

ΛB4

B1
(Rrs(Bi)) + w ΛB7

B5
(Rrs(Bi))

(14)

w =
ΛB4

B1
(Rrs(Bi))

ΛB7

B5
(Rrs(Bi))

(15)
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Fig. 3. Range of minimized errRrs of this study. Left to right represents
sequential order of the 3300 data sets.

On the other hand, erroneous retrievals will be derived if the
optimization process stopped prematurely.

To quantitatively measure the difference between retrieved
and known values, the signed percent difference for each data
point was calculated as

δQ =

(
Qder

Q
− 1

)
× 100 (16)

with Q representing a known value (input value) and Qder

representing SOA-derived value.
As anticipated, the retrieval of bottom (or water column)

properties strongly depends on the bottom (or water column)
signal contribution to the Rrs(λ) spectrum. As an example,
Fig. 4 shows the relationship between MB and the absolute
value of δH , abs(δH−hyper), with H derived from hyperspectral
setting. Not surprisingly, when MB decreases, abs(δH−hyper)
increases, particularly for MB <∼ 0.4. However, as MB ap-
proaches 1.0, abs(δH−hyper) gets slightly larger. This is because
of the mismatch of the spectral shape of bottom reflectance (see
Fig. 2). When MB is getting closer to 1.0, most of Rrs(λ)
comes from the bottom, and this information is presented
almost in the entire V–NIR spectrum. Consequently, the use
of a proper bottom spectral shape is important for the retrieval
of bottom properties. For intermediate MB values (for exam-
ple, MB = 0.5), the transparent window (for instance, around
570 nm for coastal areas) contains most of the bottom in-
formation, while the bottom signal in the shorter and longer
wavelengths are diminished due to water’s attenuation (wa-
ter itself and the presence of plankton and dissolved mate-
rials). Consequently, the match of the entire spectral shape
of bottom reflectance is no longer that important, and lower
abs(δH−hyper) is achieved. In short, if the bottom reflectance
has strong spectral signature in the transparent window (which
could be narrow or wide), it is always important to have
a matching spectral albedo shape in this window for better
retrieval of bottom properties.

The aforementioned results indicate that, for high-quality
retrieval of bottom properties (depth), it is, in general, sufficient
to use a value of about 0.4 for MB as an effective criterion.
Thus, in the following, we focus on the results where MB is
greater than 0.4.

Fig. 4. Scatter plot between MB and abs(δH) of the 3300 data sets, which
shows a general trend of smaller abs(δH) with higher MB .

A. MB Known From Input

To characterize the retrieval of the SOA, Figs. 5(a) and (b)
compares retrieved H with known depth for bottoms with
MB ≥ 0.4, and MB was calculated using simulated remote-
sensing information (2533 data points). For a depth range of
0.3–25 m with wide variation of water properties, the coeffi-
cient of determination (R2), the slope, and the bias are 0.996,
1.03, and 0.17, respectively, for the hyperspectral retrieval, and
they are 0.985, 0.973, and 0.31, respectively, for the WV2
retrieval. For the percent difference, δH−hyper is in a range of
−17.5% to 34.4%, while δH−WV2 is in a range of −42.4%
to 37.6%. As shown here and in previous studies [6], [7],
[11], generally, the retrieved depths match known depths very
well when hyperspectral measurements are available. This is in
part due to the strong bottom signal in Rrs spectra. However,
when hyperspectral signal is degraded to LWB settings, the
range of error of retrieved H is increased by ∼50% even for
MB ≥ 0.4.

To further highlight the impact of LWB on shallow depth
retrieval, Fig. 5(c) compares the WV2-retrieved depth with the
hyperspectrally retrieved depth for MB ≥ 0.4. The δH between
WV2 retrieval and hyperspectral retrieval is in a range of
−48.2% to 26.6%. Statistically, the two retrievals are quite
consistent (R2 = 0.987, slope = 0.94, and bias = 0.15). The
smaller than 1.0 slope and the small bias indicate that HWV2

tends to predict shallower depths than Hhyper for this data set.
It is interesting to note that most of the difference appeared for
H >∼ 10 m. Because SOA solves for five variables simultane-
ously with a simple objective of obtaining the smallest errRrs,
it is not easy to visualize the cause and effect associated with
the LWB setting. Generally, the increasing difference between
hyperspectral and WV2 retrievals may stem from at least three
reasons. First, with a greater depth and a larger absorption in
the blue bands, the Rrs spectrum will have a sharper peak
around blue–green transparent window (see Fig. 1 for an ex-
ample). Hyperspectral measurements will be able to observe
this peak, but measurements with LWB settings will not only
miss the peak but also level the spectrum in various degrees
(see the red line in Fig. 1). Second, because of this leveling
of the spectrum, the red edge (> 600 nm) measured by WV2
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Fig. 5. Retrieval results of known MB ≥ 0.4, for both hyperspectral and WV2 band settings. (a) Scatter plot between derived and known depths. (b) Variation
of δH and its relationship with known depth. (c) Scatter plot between WV2-retrieved and hyperspectrally retrieved depths. (d) Range of δB . As in Fig. 3, X-
axis represents sequential order of the 3300 data sets. (e) Scatter plot between derived and known absorption coefficients at 440 nm. (f) Scatter plot between
WV2-retrieved and hyperspectrally retrieved absorption coefficients at 440 nm.

will be higher than that measured by a hyperspectral sensor
for the same corresponding region. And, third, the absorption
coefficients in the longer wavelengths are nearly constant due to
the strong contribution of water absorption itself; therefore, the
simplest solution by the optimization code is to use a smaller H
value in order to get larger Rrs value in order to match the ele-
vated WV2 values. As a consequence, the shorter wavelengths
will then be compensated by adjustments to the absorption
coefficients, where there are two independent variables (P and
G). Also, note that, here, the bottom reflectance used in the
inversion has higher relative contribution in the red than in
the blue–green compared to the bottom reflectance used in the
simulation. If it is a reversed situation, i.e., simulation with a
sandy bottom spectral shape but inversion with a spectrally flat
spectral shape, an even shallower H might be necessary in order
to compensate the reduced relative contribution of the bottom
in the longer wavelengths for high MB cases. In short, because
of the various combinations of water and bottom properties
and the complexity of an SOA system, we cannot draw a

general conclusion that, each time, HWV2 will be shallower
than Hhyper [as shown in Fig. 5(c)].

For bottom reflectance at 550 nm, the percentage difference
is generally within ±20% [see Fig. 5(d)], which indicates that,
when MB ≥ 0.4, it is quite confident to retrieve a reliable
bottom property at 550 nm, at least for the sandy bottom
case. However, this does not mean that we will retrieve sim-
ilar quality of bottom reflectance values at other wavelengths.
Fundamentally, in the current SOA scheme, bottom reflectances
at other wavelengths are not derived independently from Rrs

measured at those wavelengths but inferred with a predefined
bottom spectral shape [see (9)]. Therefore, for the simulated
data sets where the input spectrum is spectrally flat while
the output spectrum is spectrally reddish, less accurate results
will occur for other wavelengths (underestimation at shorter
wavelengths and overestimation at longer wavelengths for this
data set) even if we have perfect results at 550 nm. The impact
of this error (or uncertainty) is propagated to water properties
(as discussed later).
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Fig. 6. As in Fig. 5 for retrievals of MB ≥ 0.4, but MB is calculated from derived Rrs information when the optimization is reached.

The retrieved absorption coefficients at 440 nm from both
hyperspectral and WV2 settings do not match well with known
values when MB ≥ 0.4 [see Fig. 5(e)]. This is because, when
the MB value is large, there is less contribution to the total Rrs

from the water column. Consequently, a larger uncertainty is
expected in retrieving water properties. The systematic lower
a(440), however, is due to the spectral shape of bottom re-
flectance used in the retrieval which is red rich compared to
the spectral shape used for the data simulation (see Fig. 2). To
compensate for the smaller bottom reflectance in the shorter
wavelengths, a smaller total absorption coefficient is required
(where there are two free variables) in order to achieve a
good match between known and derived Rrs’s. Similarly, if
the simulation is with a sandy bottom spectral shape (see
Fig. 2) while the inversion is with a spectrally flat spectral
shape, a higher absorption coefficient will be expected as it
is required to compensate for the elevated bottom contribution
from the shorter wavelengths. These results indicate that, for
an aquatic environment with a shallow bottom, the quality of
retrieved water or bottom properties is highly dependent on
their relative contributions in the measured Rrs and the close-

ness of the spectral shape used in the inversion versus the actual
environment.

B. MB Derived From Rrs

For a remote-sensing scenario, the only available information
is Rrs along with auxiliary data (such as time and location),
the MB value is not known a priori, and this value must be
derived from the measured Rrs. The following uses modeled
Rrs when the optimization is reached to calculate MB and
evaluate the SOA results. We again focus on retrievals with
MB ≥ 0.4 to characterize the effects of LWB, with results
shown in Fig. 6. With such a criterion, depth retrieved with
the hyperspectral setting still compared very well with known
values (R2 = 0.995, slope = 1.03, and bias = 0.17), and δH is
in a range of −29.4% to 34.4%. The number of points with
MB ≥ 0.4, however, became 2582 (as compared with 2533
mentioned earlier), which indicates that a few deeper bottoms
were falsely interpreted as optically shallow bottoms.

When MB was derived with the WV2 band setting, the
number of points with MB ≥ 0.4 became 2598, i.e., even
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Fig. 7. Comparison between the results of WV2 band settings, one using band-averaged modeling coefficients [represented as WV2(avg)] and the other using
hyperspectral modeling coefficients then convolved to WV2 bands. (a) Scatter plot between derived and known depths. (b) Variation of δH and its relationship
with known depth. (c) Scatter plot between WV2- and WV2(avg)-retrieved a(440). (d) Range of WV2- and WV2(avg)-retrieved bottom reflectances at 550 nm.

more points falsely categorized into optically shallower bottom.
Furthermore, compared to known depths, δH is in a range of
−70.6 to 37.6% (R2 = 0.972, slope = 0.95, and bias = 0.35).
These results clearly indicate that larger uncertainties resulted
from the LWB setting, particularly more points being falsely
classified as shallower bottoms. Compared to Hhyper, HWV2

is generally shallower, and again, most of these occurred for
Hhyper >∼ 10 m. For depth less than 5 m, retrievals from both
hyperspectral and WV2 settings are about the same, as long
as MB ≥ 0.4. To improve the confidence of depth retrieval
from the WV2 band setting, particularly for deeper bottoms,
it is necessary to have a more stringent criterion about optically
shallow bottoms. For example, if we set MB ≥ 0.6, the range
of δH became −28.4% to 37.6%.

Because of the retrieval of false optically shallow water, the
bottom reflectance at 550 nm derived with the WV2 setting is
slightly worse (average of abs(δB) = 10.7%) than that derived
with the hyperspectral setting (average of abs(δB) = 9.4%).
The results of water’s absorption coefficient are similar to those
retrieves when MB is calculated from known Rrs informa-
tion, i.e., retrieved values are significantly smaller than known
values. In addition, a(440) from the WV2 setting is slightly
higher than that obtained with the hyperspectral setting, again,
a consequence of slightly shallower H value.

C. Results With Band-Averaged Model Coefficients

For data sets measured by LWB sensors, another common
practice in analytical remote sensing is to model the measured

Rrs of each band with band-averaged coefficients; then, (10)
can be written as

Rrs(B1) =F (aw(B1), bbw(B1),P ,G,X,B,H)

Rrs(B2) =F (aw (B2), bbw(B2),P ,G,X,B,H)

...

Rrs(Bn) =F (aw(Bn), bbw(Bn),P ,G,X,B,H) (17)

i.e., all constants to model Rrs (like aw and bbw and model
coefficients for phytoplankton absorption coefficient, for ex-
ample) are taken as band-averaged values. Compared to (10),
the aforementioned equation also consists of five variables, and
they can be retrieved with the same objective function (14) and
the same optimization tool.

For the 3300 simulated WV2 spectra, we retrieved bottom
and water-column properties and compared the results with
known values and those retrieved using the hyperspectral model
convolved approach (Section III-B), with the results shown in
Fig. 7. Generally, both approaches generated quite consistent
results (except one point of significant underestimation of H
by the spectral-convolved scheme). With the band-averaged
model coefficients, for MB ≥ 0.4 (2576 points, calculated from
modeled Rrs(Bi) when optimization is reached), δH is in a
range of −57.4% to 26.7% (R2 = 0.968, slope = 0.82, and
bias = 0.33) when compared with the known depth. These
results are similar to that using hyperspectral-convolved LWB,
but H retrieved with the band-averaged coefficients is gen-
erally underestimated by ∼15%, particularly for H >∼ 5 m.



LEE et al.: COMBINED EFFECT OF REDUCED BAND NUMBER AND INCREASED BANDWIDTH 2585

This is because an LWB sensor measures total effect and the
relationship between Rrs and a, bb, and H is not linear [28].
Thus, (17) is not exactly accurate between band-averaged Rrs

and band-averaged a and bb. This average should be spectrally
weighted by the relative contribution of water and bottom
properties. Because water and bottom properties change sig-
nificantly from location to location, one set of band-averaged
values will not work for all cases (i.e., no universal values).
The better results for H < 5 m are because, for the data set
used, these cases generally have MB ≥∼ 0.8, and therefore, the
modeling of water properties is no longer that important since
most of the signal in the measured Rrs comes from the bottom
contribution.

Further, because of using the band-averaged coefficients,
the retrieved B (bottom reflectance at 550 nm) values with
the band-averaged scheme are generally lower than the known
values (average of abs(δB) ∼ 16%). Note that it is ∼10% for
the spectral-convolved scheme. This is because of the smaller
H (shallower depths); subsequently, the exponential function
related to the bottom contribution will be larger, and a smaller
B value is necessary to compensate this enhancement. Another
effect of the shallower depth is the slightly larger total absorp-
tion coefficient when using the band-averaged scheme.

From the aforementioned comparison, it suggests that it is
better to use a hyperspectral-convolved approach for analytical
remote sensing of LWB measurements, particularly for depths
deeper than ∼5 m. If an approach with band-averaged coef-
ficients is necessary, such coefficients should not be simple
arithmetic averages of the hyperspectral constants (like aw, bbw,
etc.) based on the band-response function but rather an opti-
mized set of coefficients based on wide combinations of water
and bottom properties.

V. SUMMARY

With a wide dynamic data set and using an analytical hyper-
spectral inversion algorithm, it has been found that if the bottom
contribution makes up 40% or more of the total measured
radiance, retrieval of bottom depth with the WV2 band setting
has equivalent fidelity to that obtained using a hyperspectral
setting, particularly if the bottom depth is within 5 m (or bottom
contribution makes 80% or more of the total signal). Larger
uncertainties with the WV2 band setting are found for deeper
bottom depths, which require a more stringent criterion about
the bottom contribution (e.g., 60% from bottom) in order to
enhance the fidelity of remotely retrieved depth for the WV2
sensor. Results from this study also indicate that, for such
wideband measurements, because Rrs is not a linear function
of either the water or bottom properties, it is better to use a
hyperspectral model accompanied with spectral convolution to
model the band-averaged Rrs instead of using band-averaged
modeling coefficients to model the band-averaged Rrs. Al-
though the study here used a sandlike bottom and used WV2
band setting as an example, the conclusions should also be
applicable to other bottom substrates or other LWB sensors
(e.g., System for Earth Observation, IKONOS, etc.), i.e., LWB
setting will affect bottom retrievals, but the extent will depend
on the relative contribution of bottom to the total signal and

the ability to match the bottom spectral shape used in inversion
versus the actual bottom substrate when the bottom is quite
shallow optically.

It is necessary to point out that the aforementioned conclu-
sions apply only to analytical inversion schemes. For empirical
approaches (e.g., Lee et al. [29] and Loomis [30]), such band-
setting effects will be included in the empirically derived trans-
fer coefficients, although they could be image or region specific.
Another challenge for remote sensing with LWB sensor types
is the atmosphere correction, as specific bands will also extend
over the various gas spectral absorption regions and includes
their effects. High-quality atmospheric correction of LWB sen-
sors is critical before any analytical algorithms can be applied
to retrieve subsurface properties and, as such, is an area that
demands further effort.
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